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Abstract. A generalized Newton–Sabatier inversion method which permits extraction from scattering data
of central and spin-orbit potentials is presented. The inversion method originally developed by Sabatier
and further elaborated by Hooshyar and Richardson, has been reformulated to lead to physically reason-
able solutions and to allow for its numerical implementation. Numerical problems due to the occurrence
of singularities in the transformation kernel are discussed and a successful application using schematic
scattering data is reported.
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25.40.-h Nucleon-induced reactions

1 Introduction

The solutions of inverse problems at fixed energy in quan-
tum scattering theory provide efficient methods for the
analyses of experimental scattering data. For more than
three decades this topic has been studied quite intensively
by mathematical physicists and today several mathemat-
ical formulations dealing with different types of interac-
tions are available (see e.g. [1]). The inverse problem at
fixed energy when only central interactions are involved is
arguable the simplest and most studied one. For this case
various inversion schemes, both quantal [2–4] and semi-
classical [5], have been developed and applied successfully
to experimental data.

The state of inverse scattering methods is less sat-
isfactory for systems involving a spin–orbit interaction.
Such systems are of particular interest in atomic and nu-
clear physics where the spin–orbit term is responsible for
most of the level splitting and polarization phenomena.
Including the spin–orbit operator in the inverse scatter-
ing problem requires the treatment of a coupled channel
system where the interactions in various channels include
potential terms linearly dependent on the orbital angular
momentum quantum number `. In contrast to the direct
problem with spin–orbit potentials, there is no simple way
of decoupling the equations in the inverse problem.

In the sixties, Sabatier [7] considered this type of in-
verse problems in some detail. Using the analytic proper-
ties of scattering wave functions, he constructed interpo-
lation formulae of the Lagrange form which yield integral
equations suitable for the coupled–channel inverse scat-
tering problem at fixed energy with linearly `-dependent
potential terms. The original works [7] contain all the
mathematical relations necessary to determine central and

spin–orbit potentials knowing S matrix elements at integer
and half integer values of `. This method was extended by
Hooshyar [8] and by Richardson and Hooshyar [9]. They
reformulated the relevant equations and introduced an ad-
ditional assumption about the required S matrix elements
at “non-physical” half-integer values of `, so that their
method needs only S matrix elements at integer values
of ` as input. Those values can be obtained from experi-
ment, at least in principle. However, this inversion method
still is rather involved. It has never been implemented nu-
merically nor has it been applied to data analyses, either
schematic or experimental data. Thus, to date, scattering
data resulting from systems involving spin–orbit interac-
tions have been analyzed by simulation, either by optical
model fitting processes [8] or by the iterative perturba-
tive method [10], both of which rely on iterative solu-
tions of the direct problem. Recently, we developed an
approximate inversion scheme with which it is possible to
extract (approximate) central and spin–orbit interactions
from the S matrix [11]. The method is based on a DWBA
expansion in which the spin–orbit term is treated pertur-
batively and it has been applied successfully to analyze p-
40Ca elastic scattering data at intermediate energies [13].

In this paper we focus on the implementation of a
quantum-mechanically exact inverse scattering solution for
spin-1

2 channels involving spin–orbit potentials using the
procedure as outlined by Sabatier [7] and Hooshyar [8]
and present, using an adaption, the first application to re-
alistic data. As mentioned above the mathematics given
in the original papers [7,8] is rather involved and is not
required in its full complexity to use the method as a tool.
With such application in mind, we give a brief summary
of the theory in section 2. For numerical implementation
of the method specific questions must be considered care-
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fully, and so in section 3, we discuss specifics of the deter-
mination of the potential coefficients via a generalization
of the procedure of Münchow and Scheid [12] for the
uncoupled equations. Other important topics dealt with
in section 3 are the solution of the integral equation for
the transformation kernel as well as the evaluation of the
potentials via the associated differential equation. Numer-
ically the latter exhibits unpleasant features. The feasibil-
ity of the method is demonstrated by a schematic example
in section 4. Finally, in section 5 some concluding remarks
are given.

2 The theory

We consider elastic scattering of a spin- 1
2 particle by a po-

tential that has central, VC, and spin–orbit, VSO, compo-
nents. Using a partial wave expansion, the radial Schrö-
dinger equation for the radial wave function ψ

(+)
j` (E, r)

takes the well known form{
− h̄2

2m

[
d2

dr2
− `(`+ 1)

r2

]
+ VC(r) + 〈s · l

h̄2 〉j`VSO(r)
}

×ψ(+)
j` (E, r) = E ψ

(+)
j` (E, r), (1)

where E is the center of mass energy and j and ` are the
total and orbital angular momentum quantum numbers,
respectively. For spin-1

2 particles the expectation values of
the spin–orbit operator is given by

2〈s · l
h̄2 〉j` =

{
`

−(`+ 1) for
j = `+ 1

2

j = `− 1
2

. (2)

Following the general notation of inverse scattering the-
ory we use λ = `+ 1

2 instead of ` because it leads to more
convenient equations with regard to symmetry in λ. Fur-
thermore, we eliminated the dimension of the equations
substituting r by the variable ρ = kr and defining the
auxiliary potentials,

w1(ρ) =
[
VC(ρ/k)− 1

4
VSO(ρ/k)

]
/E, (3)

w2(ρ) =
1
4
VSO(ρ/k)/E. (4)

Thus the radial Schrödinger equation (1) is transformed
into a system of equations,

ρ2 d
2

dρ2
ψ±λ (ρ) + ρ2 [1− w1(ρ)∓ 2λw2(ρ)]ψ±λ (ρ)

= (λ2 − 1
4
)ψ±λ (ρ) , (5)

where the indices ”±” refer to j = `± 1
2 , respectively.

Sabatier [7] and later Hooshyar [8] have studied exten-
sively the properties of equation (5) by means of interpo-
lation formulae. In the following we give a brief summary
of their results which are essential to perform the inver-
sion procedure. One important key for the solution of the

inverse problem is the demonstration that the regular so-
lution φ±λ (ρ) can be obtained from the regular solution
uλ(ρ) of the potential free problem by the transformation

φ±λ (ρ) = F±(ρ)uλ(ρ)−
∫ ρ

0

ds s−2K±λ (ρ, s)uλ(s), (6)

where F±(ρ) is directly related to the spin–orbit potential,

F±(ρ) = exp
(
±
∫ ρ

0

sw2(s)ds
)
. (7)

Similarly to inversion methods for uncoupled systems [2,
3] the integral kernels K±(ρ, ρ′) represent a transforma-
tion kernel

K(ρ, ρ′) =
(
K+(ρ, ρ′)
K−(ρ, ρ′)

)
(8)

which satisfies the integral equation

KT (ρ, ρ′) = FT (ρ)E(ρ, ρ′)−
∫ ρ

0

ds s−2KT (ρ, s)E(s, ρ′).
(9)

Here we have used the compact matrix notation as sug-
gested by Hooshyar [8] where F(ρ) is defined by

F(ρ) =
(
F+(ρ)
F−(ρ)

)
(10)

and the upper index ”T” denotes the transposition of the
matrix. The matrix E(ρ, ρ′) given by

E(ρ, ρ′) =
(
−e(ρ, ρ′) q−(ρ, ρ′)
q+(ρ, ρ′) −e(ρ, ρ′)

)
(11)

is the input kernel of the inversion method and contains
the spectral information via the potential coefficients b±λ
of the expansion of q±(ρ, ρ′), viz.

q±(ρ, ρ′) =
∑
λ∈Ω

b±λ uλ(ρ)uλ(ρ
′) . (12)

The summation in equation (12) is given by the set, Ω ={
1
2 , 1, 3

2 , 2, . . .
}
, i.e. it extends over all positive integer

and half integer values of λ. In analogy the function e(ρ, ρ′)
is given by the expansion

e(ρ, ρ′) =
∑
λ∈Ω

aλ uλ(ρ)uλ(ρ′) , (13)

where aλ takes the values

aλ =
{

2λ/π
0 for integer values of λ

half integer values of λ (14)

for the specific case of vanishing reference potential
w

(0)
1 = 0. At this point it should be emphasized that for a

vanishing reference potential, the regular wave functions
uλ(ρ) are the spherical Riccati–Bessel functions, jλ(ρ), for
half integer values of λ and the cylindrical Riccati–Bessel
functions for integer values of λ. For a more general con-
sideration, the functions uλ(ρ) can be substituted by regu-
lar wave functions uV0

λ (ρ) for a specific reference potential
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w
(0)
1 = V0. These are associated with a modified set of aλ

and b±λ -values. In this paper, however, we restrict ourselves
to V0 ≡ 0.

In contrast to the case of uncoupled channels, the in-
tegral equation in the form of equation (9) does not al-
low a solution of the inverse problem. The difficulties are
generated by the modification of the input kernel by the
functions F±(ρ) which are unknowns of the inverse prob-
lem. Hooshyar [8] overcame these concerns by redefining
the input kernel to be

G(ρ, ρ′) = f E (ρ, ρ′) f−1 (15)

with

f =
(
f+ 0
0 f−

)
, (16)

where f± are given by

f± = lim
ρ→∞

F±(ρ). (17)

This modified input kernel, G(ρ, ρ′), is obtained by the
expansion

G(ρ, ρ′) =
∑
λ∈Ω

uλ(ρ)Dλ uλ(ρ′) (18)

where the coefficients Dλ are the 2×2 matrices

Dλ =
(
−aλ d−λ
d+
λ −aλ

)
. (19)

The modified potential coefficients, d±λ = f2
∓b
±
λ , can be

obtained directly from the S matrix (see section 3.1) and
therefore the kernel G(ρ, ρ′) can be determined. If one
expresses the transformation kernel K(ρ, ρ′) in terms of a
matrix function H(ρ, ρ′) defined by

K(ρ, ρ′) = F(ρ)f−1H(ρ, ρ′) f, (20)

then one can rewrite the integral equation (9), in the fa-
miliar form

H(ρ, ρ′) = G(ρ, ρ′)−
∫ ρ

0

ds s−2H(ρ, s)G(s, ρ′) . (21)

That equation is solvable for H(ρ, ρ′).
Also in contrast to the case of uncoupled channels, the

solution of equation (21) does not yield the transformation
kernel from which the potential can be evaluated. A more
sophisticated procedure is required [8]. It is based on the
representation of the transformation kernel, K(ρ, ρ′), in
terms of the auxiliary potentials w1(ρ) and w2(ρ),

K±(ρ, ρ) =
1
2
ρF±(ρ)

[
± ρ2w2(ρ)

+
∫ ρ

0

ds (s3w2
2(s)− sw1(s))

]
, (22)

which was derived by Sabatier [7]. From (22) it is straight-
forward to obtain the basic relations for the determination
of the potentials, namely

2
ρ2

[
F−(ρ)K+(ρ, ρ)− F+(ρ)K−(ρ, ρ)

]
= 2ρw2(ρ) , (23)

1
ρ

[
F−(ρ)K+(ρ, ρ) + F+(ρ)K−(ρ, ρ)

]
=
∫ ρ

0

ds (s3w2
2(s)− sw1(s)) . (24)

Using the notation

H(ρ, ρ′) =
(
H11(ρ, ρ′) H12(ρ, ρ′)
H21(ρ, ρ′) H22(ρ, ρ′)

)
(25)

and

t(ρ) =
(
F+(ρ)
f+

)2

(26)

one can write equation (23) as a differential equation, i.e.

d

dρ
t(ρ) =

2
ρ2

[
H21(ρ, ρ)−H12(ρ, ρ) t2(ρ)

]
+

2
ρ2

[
H11(ρ, ρ)−H22(ρ, ρ)

]
t(ρ) . (27)

Solving this equation with the boundary condition

lim
ρ→∞

t(ρ) = 1 (28)

enables one to evaluate the auxiliary potentials by

w2(ρ) =
1
2ρ

1
t(ρ)

dt(ρ)
dρ

, (29)

w1(ρ) = ρ2w2
2(ρ)−

1
ρ

d

dρ

×
[
1
ρ

(
H21(ρ, ρ)

1
t(ρ)

+H12(ρ, ρ)t(ρ)

+ H11(ρ, ρ) +H22(ρ, ρ)
)]

, (30)

where (30) is a reformulation of (24). Thus the central and
spin–orbit potentials are obtained directly via (3) and (4).

3 Implementation

3.1 Determination of the potential coefficients

The modified potential coefficients, d±λ , entering the in-
put kernel, G(ρ, ρ′), of the integral equation (21) contain
the spectral information and must be determined from the
phase shifts at integer and half integer values of the orbital
angular momentum quantum number. For this purpose we
consider (6) using the explicit expression for the transfor-
mation kernel,

φ±λ (ρ) = F±(ρ)uλ(ρ)−
∑
µ∈Ω

[
φ∓µ (ρ)b±µ − φ±µ (ρ)aµ

]
Lµλ(ρ)

(31)
with

Lµλ(ρ) =
∫ ρ

0

ds s−2 uλ(s)uµ(s) . (32)



    

224 H. Huber, H. Leeb: An exact inversion method for the determination of spin–orbit potentials from scattering data

To derive a suitable relationship for the determination of
the modified potential coefficients, d±λ , we define the func-
tion,

χ±λ (ρ) = F∓(ρ)φ±λ (ρ), (33)
and rewrite (31) as

χ±λ (ρ) = uλ(ρ)−
∑
µ∈Ω

[
χ∓µ (ρ)d±µ

1
t(ρ)
− χ±µ (ρ)aµ

]
Lµλ(ρ) .

(34)
Because of the boundary condition on t(ρ), (28), one can
relate the modified potential coefficients, d±λ , to the asymp-
totic behaviour of χ±λ (ρ). For potentials of short range this
yields the system of equations (λ ∈ Ω)

B±λ e
i(δ±λ −λπ/2) = e−iπλ/2−

∑
µ∈Ω

(
B∓µ d

±
µ e

iδ∓µ −B±µ aµ eiδ
±
µ

)
× e−iπµ/2Lµλ , (35)

where Lµλ is given by

Lµλ = lim
ρ→∞

Lµλ(ρ)

=
sin ((λ− µ)π/2)

λ2 − µ2
(1− δµλ) +

π

4λ
δµλ , (36)

and B±λ and δ±λ are the unknown asymptotic normaliza-
tion of the wave functions and the (known) phase shifts,
respectively.

The solution of (35) provides a set of B±λ and d±λ val-
ues for a given set of phase shifts, δ±λ . This procedure is
analogous to that for the determination of potential coef-
ficients in the matrix method of Newton and Sabatier [3].
It yields unique potentials only with a further assumption
concerning their asymptotic behaviour. An additional dif-
ficulty arises by the occurence of phase shifts at integer
values of λ which cannot be extracted from experimental
data at a given energy; a problem that Hooshyar over-
came by the assumption d±λ = aλ at the “non-physical”
λ-values. Choosing further the value of the potential co-
efficient d−1/2, he found a mathematically exact solution
of the inverse problem. These assumptions, however, fix
the phase shifts at integer λ-values in such a way that, in
general, the associated potentials are not appropriate for
use in physical applications.

In this paper we extend the procedure of Münchow
and Scheid [12] to the case of spin-orbit potentials, by
assuming that we know w1(ρ) and w2(ρ) for ρ > ρ0. Thus
one can determine the regular wave functions (apart from
their normalizations) for ρ > ρ0 from the knowledge of the
phase shifts δ±λ . If the potentials vanish for ρ > ρ0, the
regular wave functions in this domain are proportional to

T±λ (ρ) = cos(δ±λ )uλ(ρ)− sin(δ±λ )vλ(ρ) , (37)

where vλ(ρ) are the Neumann functions for integer and
half-integer values of λ. Substituting (37) into (34) yields
the system of linear equations,∑
µ∈Ω

{
B̄±µ [δµλ − aµ Lµλ(ρ)]T±µ (ρ) + d̄±µLµλ(ρ)

1
t(ρ)

T∓µ (ρ)
}

= uλ(ρ), (38)

where d̄±µ is defined by

d̄±µ = B̄∓µ d
±
µ . (39)

In numerical calculations the sum in (38) must be re-
stricted to a finite number of partial waves. Therefore we
introduce the set Ω̄ = {1

2 , 1, 3
2 , . . . , λmax}, where λmax is

the highest partial wave number taken into account. Us-
ing Ω̄ instead of Ω in (38) leads to a system of linear
equations in 8λmax variables {d̄±µ , B̄±µ , µ ∈ Ω}. In prin-
ciple (38) should be valid for all ρ–values with ρ > ρ0.
Hence, a system consisting of the equations at two ρ val-
ues ρ1, ρ2 > ρ0 is solvable and leads to a unique set of
potential coefficients d±λ and normalization constants B̄±λ .

As in the uncoupled case [12] the procedure does not
yield potentials w1(ρ) and w2(ρ) with the prescribed be-
haviour for ρ > ρ0. Rather it selects from the class of
solutions of (21), the one which has the same relation of
the regular wave functions at ρ = ρ1 and ρ = ρ2 and can
be expressed by potential coefficients associated with the
restricted set Ω̄. For a reliable inversion, therefore, it is of
utmost importance to get an excellent description of the
wave function in the vincinity of ρ0 where the matching
between the known and the unknown part of the potential
occurs.

Taking into account this feature of the numerical pro-
cedure, we follow the suggestion of Münchow and Scheid
[12] and consider the overdetermined system comprising
the relations, (38), at several ρ-values ρk, k = 1, 2, . . . , N >
2. The potential coefficients, d̄±µ , and normalization con-
stants, B̄±µ , are then determined by minimizing the func-
tion

χ2 =
N∑
k=1

∑
λ∈Ω̄

∑
µ∈Ω̄

[
(δµλ − aµ Lµλ(ρk))T±µ (ρk)B̄±µ

+
Lµλ(ρk)
t(ρk)

T∓µ (ρk)d̄±µ

]
− uλ(ρk)

}2

. (40)

This minimization problem reduces to the solution of
a system of linear equations and yields potentials which
reproduce the regular wave functions at the ρk values. If
the values ρk are chosen sufficiently near to ρ0 it is reason-
able to expect that the deviation of the inverted potentials
from the prescribed one is minimal in the neighbourhood
of ρ0.

3.2 Solution of the integral equation

The central point of the inversion method, outlined in
Sect. 2, is the solution of the integral (21) for all radii
ρ, ρ′ < ρ0. The degenerate form of the modified input
kernel G(ρ, ρ′) implies a degenerate form of the modified
transformation kernel H(ρ, ρ′),

H(ρ, ρ′) =
∑
λ∈Ω̄

Qλ(ρ)uλ(ρ′) , (41)
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where the matrix valued function Qλ(ρ) can be obtained
from the system of equations∑
µ∈Ω̄

Qλ(ρ) [δλµ1 + Lλµ(ρ)] = uλ(ρ)Dλ, λ ∈ Ω̄ . (42)

Thus the solution of the integral equation (21) reduces to
an easily solvable algebraic problem.

To simplify the numerical implementation, as well as to
reveal some algebraic features, we introduce the matrices

L(ρ) =


L 1

2
1
2
(ρ) L 1

2 1(ρ) · · · L 1
2 λmax

(ρ)
L1 1

2
(ρ) L1 1(ρ) · · · L1λmax(ρ)

...
...

...
...

Lλmax
1
2
(ρ) Lλmax 1(ρ) · · · Lλmax λmax(ρ)

,(43)

Dij =


Dij

1
2

0 · · · 0

0 Dij
1

...
...

. . . 0
0 · · · 0 Dij

λmax

 (44)

and the vectors

Qij(ρ) =


Qij1

2
...

Qijλmax

 and u(ρ) =

 u 1
2
(ρ)
...

uλmax(ρ)

, (45)

where ij refers to the matrix elements of the 2-dimensional
matrices used before, ij ∈ {11, 12, 21, 22}. The dimension
of these vectors is equal to the number of elements of the
set Ω̄. With this notation one can rewrite (42) and obtain
the set of matrix equations,(

1 + D11 L
)
Q11 + D21 LQ12 = D11u ,

D12 LQ11 +
(
1 + D22 L

)
Q12 = D12u ,(

1 + D11 L
)
Q21 + D21 LQ22 = D21u ,

D12 LQ21 +
(
1 + D22 L

)
Q22 = D22u . (46)

Using the equality of D11 and D22 (see (19)) we have
derived the solution of (46) by standard algebraic manip-
ulations. It can be written in the form

Qij(ρ) = M ij(ρ)u(ρ) , ij ∈ {11, 12, 21, 22} , (47)

where the matrices M ij(ρ) are given by

M11(ρ) = L−1
{
L +

[
D21(L−1 + D11)−1D12

− (L−1 + D11)
]−1
}

L−1 ,

M12(ρ) = −L−1
(
L−1 + D11

)−1
D12

×
[
D21(L−1 + D11)−1D12 − (L−1 + D11)

]−1
L−1,

M21(ρ) = −L−1
(
L−1 + D11

)−1
D21

×
[
D12(L−1 + D11)−1D21 − (L−1 + D11)

]−1
L−1,

M22(ρ) = L−1
{
L +

[
D12(L−1 + D11)−1D21

− (L−1 + D11)
]−1
}

L−1 . (48)

The matrix elements of the transformation kernel are then
obtained by the compact form

Hij(ρ, ρ′) = uT (ρ′)Mij(ρ)u(ρ) . (49)

This representation of the transformation kernel is very
convenient for a numerical implementation because all ma-
trices involved are either symmetric (L = LT ) or diagonal
(D11,D12,D21,D22). A consequence of this symmetry is
the relation

M11 =
(
M22

)T
(50)

which can easily be seen from (48). It is obvious that
this feature simplifies the solution of the integral equation
considerably and reduce the computing time of numerical
codes. For the solution of the inverse problem we need the
values of the transformation kernels Hij at ρ = ρ′ only.
At this specific argument, the representation given in (49)
exhibits similar features as the trace. In particular, using
the relation (50) we obtain the identity

H11(ρ, ρ) = H22(ρ, ρ), (51)

which simplifies the differential equation (27) for the de-
termination of the potential.

3.3 Determination of the potentials

The scattering potentials are finally obtained via (3), (4),
(29) and (30) from the solution of the differential equation
(27), i.e. of

dt

dρ
=

2
ρ2

[
H21(ρ, ρ)−H12(ρ, ρ) t2

]
, (52)

with the boundary condition given by (28), and with use
of the identity in (51). In general the numerical solution of
a first order differential equation is straightforward. How-
ever, there arise severe problems in the solution of (52)
because both H21(ρ, ρ) and H12(ρ, ρ) exhibit several sin-
gularities as a function of ρ. Analysis of the properties of
(48) shows that these singularities must occur in both ker-
nels at the same radii ρs, s = 1, 2, . . .. Thus to solve (52)
we have developed a specific procedure based on spline
and optimization techniques. Considering (52) at a point
ρs with singular transformation kernels one can easily de-
rive the corresponding t-value, namely

t(ρs) = lim
ρ→ρs

√
H21(ρs, ρs)
H12(ρs, ρs)

. (53)

We exploit this fact and define a coarse mesh comprising
the singularities (ρs, t(ρs)), s = 1, 2, . . . and the boundary
condition (ρ∞, 1) where ρ∞ is a sufficient large radius. Per-
forming a spline interpolation through these mesh points
provides a first estimate of the solution t(ρ). In a further
step we redefine the procedure and define additional mesh
points at radii between the singularities using the corre-
sponding values as a variable in a subsequent optimization
procedure. These variables are adjusted in such a way that
the corresponding spline interpolation best satisfies (52).
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Table 1. The potential coefficients d±λ for the test case

λ d+
λ d−λ λ d+

λ d+
λ

0.5 0.75037E+02 -0.24503E+00 9.5 -0.12369E+06 -0.29836E+06
1.0 -0.42304E+03 0.62296E+01 10.0 0.80942E+04 0.38599E+06
1.5 0.13529E+04 -0.50300E+02 10.5 0.14033E+06 -0.17238E+06
2.0 -0.30899E+04 0.18083E+03 11.0 -0.10447E+06 0.39657E+04
2.5 0.30177E+04 -0.43150E+03 11.5 -0.21687E+05 -0.56898E+05
3.0 0.38417E+03 -0.99403E+02 12.0 0.37251E+05 0.55644E+05
3.5 -0.66170E+04 0.28642E+04 12.5 0.67948E+04 0.20556E+06
4.0 0.75944E+04 -0.57466E+04 13.0 0.44840E+05 -0.46232E+06
4.5 0.73857E+04 -0.11274E+05 13.5 -0.12828E+06 0.41877E+06
5.0 -0.32569E+05 0.10356E+06 14.0 0.11183E+06 -0.18300E+06
5.5 0.36210E+05 -0.41408E+06 14.5 -0.48527E+05 -0.35183E+05
6.0 0.68139E+04 0.21477E+06 15.0 -0.27800E+04 0.21630E+06
6.5 -0.57161E+05 -0.88386E+06 15.5 0.10040E+06 -0.27987E+06
7.0 0.21360E+05 0.10766E+07 16.0 -0.17332E+06 0.84170E+05
7.5 0.12953E+06 -0.83267E+06 16.5 0.73778E+05 0.17460E+06
8.0 -0.26089E+06 0.30821E+06 17.0 0.75405E+05 -0.15016E+06
8.5 0.20115E+06 0.70865E+05 17.5 -0.69682E+05 -0.64422E+05
9.0 0.11566E+05 -0.34048E+04 18.0 0.22353E+05 0.11913E+06

Thus we obtain an excellent approximation of the function
t(ρ).

One can even improve the method by the use of a nu-
merical filter smoothing the resulting function t(ρ). Thus
one can eliminate numerical inaccuracies in the transfor-
mation kernels, H12(ρ, ρ) and H21(ρ, ρ), which are always
present in the vicinity of singularities.

4 Example

The present inversion method has been developed with re-
gard to its numerical implementation. It is therefore of ut-
most interest to demonstrate the feasibility of the method
by application to a realistic example.

We consider a neutron scattered off a nucleus at a labo-
ratory energy Elab = 100 MeV. In our example we neglect
the recoil of the target and assume a realistic neutron-
nucleus interaction consisting of a central part,

VC(r) = −V C
0

[
1 + exp(

r −R
a

)
]−1

, (54)

and a spin-orbit part

VSO(r) = V SO
0

1
r

d

dr

[
1 + exp(

r −R
a

)
]−1

. (55)

The parameters are fixed to the values

V C
0 = 50 MeV, V SO

0 = 5 MeV, R = 3.42 fm, a = 0.50 fm.
(56)

which represent a reasonable choice for a typical neutron-
nucleus potential.

With this potential in the Schrödinger equations, we
evaluated the phase shifts at integer and half integer val-
ues of the angular momentum at Elab = 100 MeV. These

phase shifts are displayed in Fig. 1 and show clearly their
continuous behaviour as a function of `. They have been
used as input quantities for the inversion procedure; the
goal of which is to reconstruct the schematic potential,
equations (54-56). To apply the inversion procedure, it
is necessary to evaluate the potential coefficients d̄±λ in
the first step. For this purpose we fix the highest partial

Fig. 1. The λ-dependence of the scattering phase shifts for the
model example discussed in the text. The circles indicate the
values δorig which are used as input in the inversion procedure.
The solid curves show the phase shifts δrec evaluated with the
reconstructed potential. The dashed curves give the difference
of the evaluated phase shifts
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Fig. 2. The matrix elements of the transformation kernel as a
function of ρ for the example discussed in the text. The solid
line is H11(ρ, ρ), the dashed line is H12(ρ, ρ) and the dotted line
is H21(ρ, ρ). At larger values the dashed and the dotted values
are on top of each other

wave λmax = 18 included in the set Ω̄ and the match-
ing point ρ0 = 20. These technical parameters have been
the best choice for the considered example and in Ta-
ble 1 we present the numerical values of the potential
coefficients. Similarly to values found using the Newton-
Sabatier method there is usually no convergence of the
potential coefficients visible at the numerically considered
values of λ.

In principle the potential coefficients d̄±λ , λ ∈ Ω̄ reflect
the spectral information and can be used to determine the
modified input kernel G(ρ, ρ′) for the integral (21). Within
our algorithm outlined in Sect. 3.2 this is not necessary;
it suffices to construct the matrices D12 and D21. The
matrix elements of the transformation kernel H12(ρ, ρ),
H21(ρ, ρ) and H11(ρ, ρ) = H22(ρ, ρ) are then obtained by
straightforward calculation via equations (48) and (49)
and are displayed in Fig. 2. As mentioned previously the
functions H12(ρ, ρ), H21(ρ, ρ), and H11(ρ, ρ) exhibit sin-
gularities at several ρ values. For all three matrix elements,
these singularities occur at the same ρ-values because they
are generalized by zero points of the determinant of the
same operator.

The solution of the differential equation (52) yielding
the basis function t(ρ) for the determination of the poten-
tials is tedious because of the singularities ofH12(ρ, ρ) and
H21(ρ, ρ). For the application of our procedure (Subsect.
3.3) the ratio

√
H21/H12 must be well defined in the vicin-

ity of the singularity. That this is indeed the case is shown
in Fig. 3 at two specific singularities. Despite the obvi-
ously large numerical errors of H12(ρ, ρ) and H21(ρ, ρ) in
the neighbourhood of a singularity, the ratio

√
H21/H12

at singularities is well defined and gives a reasonable esti-
mate of the function t(ρ). Hence, these values can be used
in the subsequent optimization procedure for t(ρ).

The final step in the process is to evaluate the poten-
tials VC and VSO from t(ρ). In Fig. 4 the inverted po-
tentials are compared with the original ones. For both
potential contributions we obtain an excellent reconstruc-
tion for r > 1 fm. At smaller radii the inversion potentials
exhibit similar deficiencies to those of central potentials
obtained by the Newton-Sabatier method (cf. [12]). This
is not surprising because we have limited the expansion

Fig. 3. The functional behaviour of the ratio√
H21(ρ, ρ)/H12(ρ, ρ) in the vicinity of the singularities

at ρs = 7.14, ρs = 10.10 (solid line). For comparison we show
the function t(ρ) (dashed lines) as obtained directly from the
model spin–orbit potential. The arrows indicate the position
of the singularities

of the modified input kernel to a finite number of partial
waves.

The quality of the inversion procedure can also be
demonstrated by the evaluation of the phase shifts using
the reconstructed potential in the Schrödinger equation.
As can be seen from Fig. 1 the deviations of the reevalu-
ated phase shifts from the original ones are smaller than
0.4 degree except for λ = 0.5 and 1.5, where the differences
reach 1 degree.

5 Summary

We have reformulated the inversion method, originally de-
rived by Sabatier [7] and further developed by Hoosh-
yar [8], to make it suitable for numerical implementation.
That reformulation facilitates determination of quantum
mechanically exact central and spin-orbit potentials via
inversion techniques from scattering data. The method
can be considered as a generalized Newton–Sabatier inver-
sion procedure. This becomes most evident in the determi-
nation of potential coefficients reflecting the spectral infor-
mation, and like the standard Newton–Sabatier method
these potential coefficients are not defined uniquely. To
find uniqueness then, we have generalized the method of
Münchow and Scheid [12] which selects the potential out
of the class of exact solutions of the integral equation that
reproduces best the behaviour of the regular wave func-
tions in the vicinity of the matching point. But as this
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Fig. 4. Comparison of the inverted potentials (solid line)
with the original ones (dashed line) for the model example of
neutron–nucleus scattering that is discussed in the text. The
central and spin-orbit potentials are shown in the top and bot-
tom respectively

is only an approximate inversion, the result will depend
slightly on the technical parameter ρ0. However, our nu-
merical example indicates that the method provides suffi-
ciently accurate inversion results.

The presented inversion procedure requires knowledge
of the phase shifts at integer and half–integer values of
λ. While the phase shifts at half–integer values are used
in the equations of the elastic cross section at the given
energy, there is no such relationship to observables involv-
ing the phase shifts at integer values of λ. There is some
hope that reliable values of the phase shifts at integer
λ-values can be extracted by analyzing the observables

at neighbouring energies; the assumption being that the
phase shifts are continous function of E and λ. However,
an algorithm to provide this information is not available
as yet. A further point which must be considered with re-
gard to application, is the extension of the procedure to
deal with complex potentials.
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reichischen Nationalbank, project Nr. 4537. The authors are
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